Menu

Quantitative Methods I: Descriptive Statistics & Scientific Work

Niveau

Bachelor

Learning outcomes of the courses/module

The students: • understand the fundamentals of the research process. • understand the ethical aspects of scientific work and know how artificial intelligence should be used. • can formulate research questions appropriately. • can plan methodological approaches to answer research questions. • can research, evaluate, and cite academic literature. • understand the structure and format of a scientific work. • can draft a research proposal. • are familiar with various forms of scientific knowledge acquisition and can formulate empirical research questions appropriately. • can plan and apply methodological approaches in the research process. • are able to design and apply appropriate selection, data collection, processing, and analysis methods. • know the criteria for the quality of quantitative and qualitative social research and can apply them correctly in seminar and bachelor's theses. • are able to structure and compile large datasets using spreadsheet software. • can analyze statistical data using spreadsheet software. • possess basic knowledge of quantitative methods in business administration and economics and basic knowledge of statistical methods and procedures for describing and analyzing data. • can apply descriptive statistics and selected testing procedures.

Prerequisites for the course

None

Course content

Part A: Fundamentals of Scientific Work: • General rules of scientific work • Ethical aspects and plagiarism / Use of artificial intelligence in the research process Part B: Aspects and Techniques: • Identifying a research gap • Literature review (books, academic journals, digital library, internet) • Introduction to reference management software • Formulating research hypotheses and questions • Citation and citation styles • Objectification of research findings Part C: Content and Structure of a Scientific Work: • Structure of a scientific work • Execution of problem statement & relevance • Presentation of the aim of the work • Construction of the table of contents • List of figures and tables • Compilation of source or reference lists • Other elements of a scientific work (Declaration of originality, Abstract, Appendix etc.) Part D: Statistics with Spreadsheet: • Building data and calculation tables for statistical evaluations (data entry, automatic data generation, formatting, data structures) • Application of basic arithmetic operations on statistical data (addition, subtraction, division, multiplication, powers, etc.) • Use of selected special functions (e.g., financial mathematical or statistical functions) Part E: Fundamentals of Statistics • Introduction to descriptive statistics (graphical representation of data and distributions, calculations of statistical measures of central tendency and dispersion, test for normal distribution of data) and data interpretation • Introduction to inferential statistics (difference tests for nominal, ordinal, and cardinal scaled data) • Introduction to correlation and factor analysis Part F: Construction of a dataset and variable declaration: • Structure and organization of a dataset for statistical analyses using software • Determination and development of variables (dependent, independent, dummy, interaction) and scaling (nominal, ordinal, interval, cardinal) • Application of basic statistical methods using datasets The deepening of (theoretical) content is carried out through practical examples including software support.

Recommended specialist literature

• Bänsch, A., & Alewell, D. (2020). Wissenschaftliches Arbeiten. Berlin/Boston: Walter De Gruyter GmbH. • Bamberg, G., Baur, F., & Krapp, M. (2022). Statistik: Eine Einführung für Wirtschafts- und Sozialwissenschaftler. Berlin/Boston: Walter de Gruyter GmbH. • Braunecker, C. (2021). How to do empirische Sozialforschung: Eine Gebrauchsanleitung. Wien: Facultas Verlags- und Buchhandel AG. • Häder, M. (2019). Empirische Sozialforschung: Eine Einführung. Wiesbaden: Springer Verlag. • Oehlrich, M. (2022). Wissenschaftliches Arbeiten und Schreiben: Schritt für Schritt zur Bachelor- und Master-Thesis in den Wirtschaftswissenschaften. Wiesbaden: Springer Verlag. • Schira, J. (2021). Statistische Methoden der VWL und BWL: Theorie und Praxis. München: Pearson Deutschland GmbH. • Sibbertsen, P., & Lehne, H. (2021). Statistik: Einführung für Wirtschafts- und Sozialwissenschaftler. Berlin-Heidelberg: Springer Verlag. • Theisen, M. R., & Theisen, M. (2021). Wissenschaftliches Arbeiten: Erfolgreich bei Bachelor- und Masterarbeit. München: Verlag Franz Vahlen.

Assessment methods and criteria

• Quiz • Seminar Paper

Language

German

Number of ECTS credits awarded

6

Share of e-learning in %

20

Semester hours per week

5.0

Planned teaching and learning method

20 % of the course will be covered through eLearning. This will involve a combination of online phases (inductive method for independent knowledge acquisition and practicing tasks) and face-to-face phases (deductive method, where support is provided in the learning process and knowledge is imparted through lectures).

Semester/trimester in which the course/module is offered

1

Name of lecturer

STGL

Academic year

1

Key figure of the course/module

QQM1

Type of course/module

integrated lecture

Type of course

Compulsory

Internship(s)

-