Quantitative Methods I: Descriptive Statistics & Scientific Work
Niveau
Bachelor
Learning outcomes of the courses/module
The students:
• understand the fundamentals of the research process.
• understand the ethical aspects of scientific work and know how artificial intelligence should be used.
• can formulate research questions appropriately.
• can plan methodological approaches to answer research questions.
• can research, evaluate, and cite academic literature.
• understand the structure and format of a scientific work.
• can draft a research proposal.
• are familiar with various forms of scientific knowledge acquisition and can formulate empirical research questions appropriately.
• can plan and apply methodological approaches in the research process.
• are able to design and apply appropriate selection, data collection, processing, and analysis methods.
• know the criteria for the quality of quantitative and qualitative social research and can apply them correctly in seminar and bachelor's theses.
• are able to structure and compile large datasets using spreadsheet software.
• can analyze statistical data using spreadsheet software.
• possess basic knowledge of quantitative methods in business administration and economics and basic knowledge of statistical methods and procedures for describing and analyzing data.
• can apply descriptive statistics and selected testing procedures.
• understand the fundamentals of the research process.
• understand the ethical aspects of scientific work and know how artificial intelligence should be used.
• can formulate research questions appropriately.
• can plan methodological approaches to answer research questions.
• can research, evaluate, and cite academic literature.
• understand the structure and format of a scientific work.
• can draft a research proposal.
• are familiar with various forms of scientific knowledge acquisition and can formulate empirical research questions appropriately.
• can plan and apply methodological approaches in the research process.
• are able to design and apply appropriate selection, data collection, processing, and analysis methods.
• know the criteria for the quality of quantitative and qualitative social research and can apply them correctly in seminar and bachelor's theses.
• are able to structure and compile large datasets using spreadsheet software.
• can analyze statistical data using spreadsheet software.
• possess basic knowledge of quantitative methods in business administration and economics and basic knowledge of statistical methods and procedures for describing and analyzing data.
• can apply descriptive statistics and selected testing procedures.
Prerequisites for the course
None
Course content
Part A: Fundamentals of Scientific Work:
• General rules of scientific work
• Ethical aspects and plagiarism / Use of artificial intelligence in the research process
Part B: Aspects and Techniques:
• Identifying a research gap
• Literature review (books, academic journals, digital library, internet)
• Introduction to reference management software
• Formulating research hypotheses and questions
• Citation and citation styles
• Objectification of research findings
Part C: Content and Structure of a Scientific Work:
• Structure of a scientific work
• Execution of problem statement & relevance
• Presentation of the aim of the work
• Construction of the table of contents
• List of figures and tables
• Compilation of source or reference lists
• Other elements of a scientific work (Declaration of originality, Abstract, Appendix etc.)
Part D: Statistics with Spreadsheet:
• Building data and calculation tables for statistical evaluations (data entry, automatic data generation, formatting, data structures)
• Application of basic arithmetic operations on statistical data (addition, subtraction, division, multiplication, powers, etc.)
• Use of selected special functions (e.g., financial mathematical or statistical functions)
Part E: Fundamentals of Statistics
• Introduction to descriptive statistics (graphical representation of data and distributions, calculations of statistical measures of central tendency and dispersion, test for normal distribution of data) and data interpretation
• Introduction to inferential statistics (difference tests for nominal, ordinal, and cardinal scaled data)
• Introduction to correlation and factor analysis
Part F: Construction of a dataset and variable declaration:
• Structure and organization of a dataset for statistical analyses using software
• Determination and development of variables (dependent, independent, dummy, interaction) and scaling (nominal, ordinal, interval, cardinal)
• Application of basic statistical methods using datasets
The deepening of (theoretical) content is carried out through practical examples including software support.
• General rules of scientific work
• Ethical aspects and plagiarism / Use of artificial intelligence in the research process
Part B: Aspects and Techniques:
• Identifying a research gap
• Literature review (books, academic journals, digital library, internet)
• Introduction to reference management software
• Formulating research hypotheses and questions
• Citation and citation styles
• Objectification of research findings
Part C: Content and Structure of a Scientific Work:
• Structure of a scientific work
• Execution of problem statement & relevance
• Presentation of the aim of the work
• Construction of the table of contents
• List of figures and tables
• Compilation of source or reference lists
• Other elements of a scientific work (Declaration of originality, Abstract, Appendix etc.)
Part D: Statistics with Spreadsheet:
• Building data and calculation tables for statistical evaluations (data entry, automatic data generation, formatting, data structures)
• Application of basic arithmetic operations on statistical data (addition, subtraction, division, multiplication, powers, etc.)
• Use of selected special functions (e.g., financial mathematical or statistical functions)
Part E: Fundamentals of Statistics
• Introduction to descriptive statistics (graphical representation of data and distributions, calculations of statistical measures of central tendency and dispersion, test for normal distribution of data) and data interpretation
• Introduction to inferential statistics (difference tests for nominal, ordinal, and cardinal scaled data)
• Introduction to correlation and factor analysis
Part F: Construction of a dataset and variable declaration:
• Structure and organization of a dataset for statistical analyses using software
• Determination and development of variables (dependent, independent, dummy, interaction) and scaling (nominal, ordinal, interval, cardinal)
• Application of basic statistical methods using datasets
The deepening of (theoretical) content is carried out through practical examples including software support.
Recommended specialist literature
• Bänsch, A., & Alewell, D. (2020). Wissenschaftliches Arbeiten. Berlin/Boston: Walter De Gruyter GmbH.
• Bamberg, G., Baur, F., & Krapp, M. (2022). Statistik: Eine Einführung für Wirtschafts- und Sozialwissenschaftler. Berlin/Boston: Walter de Gruyter GmbH.
• Braunecker, C. (2021). How to do empirische Sozialforschung: Eine Gebrauchsanleitung. Wien: Facultas Verlags- und Buchhandel AG.
• Häder, M. (2019). Empirische Sozialforschung: Eine Einführung. Wiesbaden: Springer Verlag.
• Oehlrich, M. (2022). Wissenschaftliches Arbeiten und Schreiben: Schritt für Schritt zur Bachelor- und Master-Thesis in den Wirtschaftswissenschaften. Wiesbaden: Springer Verlag.
• Schira, J. (2021). Statistische Methoden der VWL und BWL: Theorie und Praxis. München: Pearson Deutschland GmbH.
• Sibbertsen, P., & Lehne, H. (2021). Statistik: Einführung für Wirtschafts- und Sozialwissenschaftler. Berlin-Heidelberg: Springer Verlag.
• Theisen, M. R., & Theisen, M. (2021). Wissenschaftliches Arbeiten: Erfolgreich bei Bachelor- und Masterarbeit. München: Verlag Franz Vahlen.
• Bamberg, G., Baur, F., & Krapp, M. (2022). Statistik: Eine Einführung für Wirtschafts- und Sozialwissenschaftler. Berlin/Boston: Walter de Gruyter GmbH.
• Braunecker, C. (2021). How to do empirische Sozialforschung: Eine Gebrauchsanleitung. Wien: Facultas Verlags- und Buchhandel AG.
• Häder, M. (2019). Empirische Sozialforschung: Eine Einführung. Wiesbaden: Springer Verlag.
• Oehlrich, M. (2022). Wissenschaftliches Arbeiten und Schreiben: Schritt für Schritt zur Bachelor- und Master-Thesis in den Wirtschaftswissenschaften. Wiesbaden: Springer Verlag.
• Schira, J. (2021). Statistische Methoden der VWL und BWL: Theorie und Praxis. München: Pearson Deutschland GmbH.
• Sibbertsen, P., & Lehne, H. (2021). Statistik: Einführung für Wirtschafts- und Sozialwissenschaftler. Berlin-Heidelberg: Springer Verlag.
• Theisen, M. R., & Theisen, M. (2021). Wissenschaftliches Arbeiten: Erfolgreich bei Bachelor- und Masterarbeit. München: Verlag Franz Vahlen.
Assessment methods and criteria
• Quiz
• Seminar Paper
• Seminar Paper
Language
German
Number of ECTS credits awarded
6
Share of e-learning in %
20
Semester hours per week
5.0
Planned teaching and learning method
20 % of the course will be covered through eLearning. This will involve a combination of online phases (inductive method for independent knowledge acquisition and practicing tasks) and face-to-face phases (deductive method, where support is provided in the learning process and knowledge is imparted through lectures).
Semester/trimester in which the course/module is offered
1
Name of lecturer
STGL
Academic year
1
Key figure of the course/module
QQM1
Type of course/module
integrated lecture
Type of course
Compulsory
Internship(s)
-